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https://www.youtube.com/watch?v=p__ -QbQbnitl

A design of a motion system — motion can be described using kinematic
equations when approximated as rigid structures
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% Evaluating design

HEAT TRANSFER

WARMER HIEAT TRANSEHER
OBJECT

What if your design is deformable structure,
involves heat transfer, or fluids
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% Evaluating design

% Conservation Equations
% Conservation of Mass
% Conservation of Energy
% Conservation of Momentum

J

% Partial Differential Equations
% Describing change in space and time

¢$ Constitutive Models for Materials
¢ Hooke’s Law

Newtonian Fluid

fc.

S <4
m
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% Evaluating design

Millennium Prize Problems

F versus MF problem
Hodge conjecture
Poincare conjecture (solved)
Riemann hypothesis
Yang—-Mills existence and mass gap
Mavier—Stokes existence and smoothness
Birch and Swinnerton-Dyer conjecture

WeT-E

Even much more basic properties of the solutions to Navier—Stokes have never
been proven. For the three-dimensional system of equations, and given some
initial conditions, mathematicians have not yet proved that smooth solutions
always exist, or that if they do exist, they have bounded energy per unit mass.

What about higher order, higher dimension PDEs
( du ou  0%u *u )
Flzy,...,zq,u, —,... BN =—S

X
Tyt aI]_ 1 1 aIn] axlaxl 1 1 axlaxﬂ 1

Reality: Most PDEs CANNOT be solved analytically!!! 5
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% Evaluating design

% Numerical solutions
% Discretize and turn PDEs into a system of algebraic
equations (mostly linear)

Most popular methods

¢ Finite difference methods
¢ Finite element methods

Other methods

Finite volume method
Boundary element method
Discrete element method
Spectral method

Particle based methods

£ I -C I - 4

§ <4

http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Numerical_methods_for_partial_differential_equations
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¢ Classification of PDEs

¢$ Second-order linear PDEs

QUgy + bUyy + cuyy +dug, +euy + fu+9g=0

are classified based on the value of the discriminant b? - 4ac

Wave equation

$ b?-4ac>0: hyperbolic
e.g., wave equation: u,- u,=0
% Hyperbolic PDEs describe time dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state. Heat equation
¥ b?-4ac =0: parabolic
% e.g., heat equation: u,- u,=0
% Parabolic PDEs describe time-dependent dissipative
physical processes, such as diffusion, that are evolving
toward steady state.
¥ b?-4ac<0: elliptic i
% e.g., Laplace equation: u, + u,,=0 | aplace equation
% Elliptic PDEs describe processes that have already reached
steady states, and hence are time-independent.

<4
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¢ Finite Difference Method

o f = lim f (X+dx)— f(x)

dx—0 dx

ﬂ Discretize

N f (X+dx)— f(x)

@ . f i dX Forward difference
- f(x)— f(x—dx)
ax f ~ dX Backward difference

5 f f(x+dx)— f(x—dx)
: 2dx

Centered difference
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¢ Finite Difference Method

% Consider a 1D initial-boundary value problem for heat equation

Ut = KlUgy, 0< <1, >0

u(0, z) = f(x), Initial Condition

u(t,0) = a, Boundary Condition at x = 0
1

(
u(t, 1) = 3, Boundary Condition at x = 1

Discretize the spatial domain [0, 1] into m + 2 grid points using a

uniform mesh step size | Az = 1/(m + 1) | Denote the spatial grid

points by x;,7 = 0,1,...m + 1.

L=

O==z9 =1 x2 ... ...%j—1 Tj Tj41 . zpmTm4r =1
Ax
B

Credit: Vrushali A. Bokil and Nathan L. Gibson @ Oregon State U
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¢ Finite Difference Method

% Consider a 1D initial-boundary value problem for heat equation

Similarly discretize the temporal domain into temporal grid points
tr = kAt for suitably chosen time step At.

Denote the approximate solution at the grid point (¢, x;) as U;“.

k ko k k t, = kAt
a=uf uf uj Yj—1 %5 Yi41 uk up 1 =B LE
T —p
O=z9p z1 x2 ... ...Z%Tj=1 Tj Tj41 . zmTm41 =1
Ax
e
The space-time grid can be represented as
A A
(t2:m')
to J
ml
t1
t
to T
O=xq ¢y x2 ... ... %Tj—-1 ZTj Tj41l | z;mTmir =1

10

Credit: Vrushali A. Bokil and Nathan L. Gibson @ Oregon State U
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¢ Finite Difference Method

% Consider a 1D initial-boundary value problem for heat equation

Replace u; by a forward difference in time and u,,. by a central
difference in space to obtain the explicit FDM

k+1 k k k
Uj‘ - U Uj‘+l ZUJ ‘I‘ Uj—l

At - (Az)2
At
Uk = Uk 4 (Z B Uk, —2UF+UF,), j=12,...m

Using Taylor series to determine order of accuracy for the approximation

dx’ dx’ dx*
f (x£dx) = f (x)+dxf (x)+—f (x )+—f ( )+—f "(X) *...

2! 3! 41
First order fx+d)—-1(x) _ 1 {d «f (X)_|_d_f (x) + _f () +. }
accurate in time dx - dx
= f'(x) +O(dx)

Second order Fu| i — 2u; + iy -
accurate in space  dz?| (Az)? +0((Ae)) B
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¢ Finite Difference Method

% Consider a 1D initial-boundary value problem for heat equation

j—1 3 J+1

Computational Stencil

The local truncation error is O(At) + O((Ax)?).

¢ How to choose At and Ax?

12
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% How to choose At and Ax?
u 1 T T ;‘\ T L HAt 1
Initial S r —= A_ < —
0.8 function| ~ \ b —
¢ LY I 2
08 S el 1 With Ax =0.01 and At = 105
0.7} R o i
oor PR NN 1  What happens if r is
0.5| S LT {1 greater thani/2»
ST TR RN
0.4F "'r",//j/ ,“'#_,__.-—-—--_,__‘_"'-‘_‘_‘\:"\\\ -
IR, J
b, Pk o L _,_a-""__""-._‘_"“'."".\\\x\:\
03 ARSI SIIINNN
0.2 2
0.1
dx=0.01, dt=1e-05, r=0.1
DD 0.2 0.4 0.6 0.8 1
¢ Initial condition: discontinuous at x = 0.5
¥ Rapid smoothing of discontinuity as time evolves
% High frequency damps quickly. The heat equation is stiff =
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¢ Finite Difference Method

¢ How to choose At and Ax»

What happens if r is greater thani1/22

v
x10
1.5
'iiH;i'
|' ||
chy R
T RN
|||‘|i|'|"| H|',||'I|I
“|I'|l|'|1'| "F.H'IIH
I‘l“Ililllllll"lll'lllhll'lII
|,ll“||'|!'”||".."'|'|,||||'||“|[
0.5} Iilllll“||||:|||ll|I|I:I”I:'I||“I|||III|I|I llﬂ;‘
.|'||'l||"||Illll',|‘|'l|||'||||,,'lIlI||,||”'H”.
Pt Ot g
|rl'|"||||'|'|I||'|-':”"||'|'|'||'|'|'||"":'”||i|'I‘,nlr"I
' iI|‘|'I‘H|I'I|I'|l”'"IIIII'I|I|'I|I'I”|“|||“I|'I"Illl'l'ul'n h
0 a’-fl‘|llr|'4"l"'“l.".ll"I'”'|"':II:':I:":II.':”::"-'"'I"I:‘:I"”'ll:'l'lﬂ.'lll‘1
Jlll"”"lI|'l"|lI|I;Illllllll;'lul'ul|”'|"|;:"'|'”|I||'|.|I':“I:lr“;u'lj‘l';ll””‘!‘
R T
I LN T L TR T T N
' II‘I-||‘|I|”:'”IIII'I|I|II|I'IIII”':"'I|||||||II']I
||l‘|l I||""'I||I'““|I"||"”"'|l|'l'||
-0.5 RN L E I T I
|ill'lflll'IlllllllllllllllllllI“I‘i.lll
"Hil IFHH“"'h“”n Iq"'
HRHE T
Pl et iyt IFI|
Pttt
-1t it it
.H||Ii||| 1
i
dx=0.01, dt=0.0001, r=1
1'5[) 0.2 0.4 0.6 0.8 1

Unstable behavior of numerical solution
At and Ax cannot be chosen arbitrarily. Must satisfy a
stable condition. 14

D
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¢ Finite Difference Method
¢ Implicit FDM

k+1 k k41 k+1 k+1

_ il
At (Ax)?
[k — k kAL [TR+HL _ oprk+1l o prk+1 1.9
— U = j+(A3:)2( jr1 — U+ j—1)a3_ RIRERRIL
k+1 . . E+1 . .
E o . ] . k /]\
k_l - - - k_l L ] L ] [ ]
jg—1 J Jg+1 J—1 j j+1

Implicit computational stencil Explicit computational stencil 15
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¢ Finite Difference Method
¢ Implicit FDM

1 T T 7 T T
oy
132 / !
natk Initial p . |
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B 4
! 5
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0 0.2 0.4 0.6 0.8 1

¢ Stable behavior of numerical solution
¢$ At and Ax cannot be chosen to have the same order of
magnitude. Unconditionally stable. 1o
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¢ Finite Difference Method

¢ Implicit FDM - 2"d order accurate in time - trapezoid rule

k 5 y :
Ut Uk (U}‘H —2UF + U;'“—1) LK (Ujfll — U7 Ujjll)

At 2 (Az)2 2 (Az)2
syt gk RAL (U‘“ —oUk Uk | pURHL _ouktl 4 U’“+1)
J ] 2 Jj+1 J j—1 j+1 7 j—1 )
2(Ax)
j=1,2,...m

Unconditionally stable
Second order accurate in time

0

<4

?Su
p
—
b
2

-2t

log, (LTE)

j—1 3 Jg+1

Computational stencil

log,(4 %) 17
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¢ Finite Difference Method

% FDM for advection equation

ur+au, =0, 0<x<1,t>0

u(0,z) = f(x), Initial Condition

u(zx,t)
1 Characteristic
t xr —at = x3
w(0) /I>< !
i /"“
. I

r1 x2 I3

¢ Information propagates along characteristics "
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¢ Finite Difference Method

% FDM for advection equation

uptt-uf Uk, -UF

j j J
At TOTTAD =0
At
—_—>U;"+1 Uk Z:r: (U —U;“_l),j—l,Q, m
kE+1 . .
E—1

J—1 J Jj+1

Computational stencil

% Scheme is explicit
% First order accurate in space and time

% At and Ax are related by CFL number: v = aAt 7 Ax 1
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¢ Finite Difference Method

% FDM for advection equation

The CFL Condition | For stability, at each mesh point, the Domain of
dependence of the PDE must lie within the domain of dependence of

the numerical scheme.
t t

A ' N

..........................

..........

(z0,0)

% CFLv <=1
% CFL is a necessary condition for stability of explicit FDM
applied to Hyperbolic PDEs. It is not a sufficient condition.

20
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¢ Finite Difference Method

% FDM for Laplace equation

Yy boundary node
=1
U = ]_ YyI+2 =g i
'y
Vi1 + + + + + +
v +—— + + + ¢
k. Ay
u = U u = 0 + * * * ¢ ¢
Ax
¢ + + ¢ + ¢
> T Y2 +—o + +——e ¢
v1 ? 2 < * I +
Y
u=>0 0=y & & L 4 4 & | i L .
O=zpxz1 x2 ... ... Tj1 Tj; Tjyy | TrL41rp42 =1

Boundary conditions Discretization

21
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¢ Finite Difference Method

% FDM for Laplace equation - centered difference scheme

Uj+1,k — 2Uj,k + Uj—l,k + Uj,kq_l — 2Uj,k + Uj,k—l

(Az)? (By)? =0

If Ax = Ay this becomes

Uis1k+Uj—1x +Ujps1 +Ujp—1 —4Uj . =0

-1 J J+1

Five-point stencil

22
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¢ Finite Difference Method

% FDM for Laplace equation - form a system of linear equations

increasing j —>
— -— —_
-4 1 1
1-4 1 1 each
block
. e . (L+1)x
-4 1 . (L+1)
1-4 1

AU =0

4 1 1 0 Upa
1 -4 0 1 Uz
1 0 -4 1 Ura
0 1 1 -4 Usa

«—— increasing i

1 1-4 1 i

—_ =0 O

b contains boundary
information

A is block tridiagonal - T . block
Structure of A ' T '
depends on the
order of grid points . e '
¢ Can be solved using ! 14 !
iterative or direct , e
methods, such as ' L
Gaussian elimination . i

<4

2D

< J+ 1 blocks
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¢ Finite Element Method

Features

¢ Complicated geometries

¢ High-order approximations

¢ Strong mathematical foundation
% Flexibility

Basic Idea

M
u(x) ~ u(x) = Z wigi(x) U M unknowns; Need M equations

+ Discretizing derivatives results in linear system

* ¢, are basis functions

24
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¢ Finite Element Method

Poisson’s Equation - Elliptic

—Au(x) = f (X) A=v2:5_22+ & +522

ox° oy° oz
Steady state heat transfer
2@5
kA—; —hPp +hPpr+ q =0
* ‘ Heat suppl

Heat conduction Heat convection PPYY
1D Example

—u" = f, 0<zx<l1

u(0) =u(l) =0

¥ Solution must be twice differentiable

¥ Unnecessarily strong if f (e.g., heat supply) is discontinuous 25
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¢ Finite Element Method

¥ Weak Formulation

Multiply both sides by an arbitrary test function v and

integrate
1 1
/—u"vda::/ fudz
0 0
1 1
/u’v'dx—u’v%:/ fodx.
0 0
1 1
/u'v'da’:zf fodz.
0 0

Since v was arbitrary, this equation must hold for all v

such that the equation makes sense (v’ is square
integrable), and v(0) = v(1) = 0.

26
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¢ Finite Element Method

¥ Approximation

1 1
/ u'v'dr = / fudz.
0 0

u(x) = u(x) = Zg_l 63@1( )

The Basic |ldea of FEM

’U ¢i(z 1
/ "‘”"d:{;—/ f’Ud$ / Z;&dﬁ;@;di(}:/o‘ fq%dl‘

Thus if A = (a;;) with a;; = [ ¢/¢;dx and
b = (b;) with b; = [} f¢dz, then

A& = b Linear System of Equations .
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¢ Finite Element Method

% Basis functions

we are looking for functions 4 (%) 1 for x=Xx
with the following property i 0 for X = X;, j#i
ey, 0
function ... 9 " G
_ _ 8 SR N
The simplest choice , R o
are of course linear o
functions: 6 e A S
5 A S+
o
grid nodes 4 + + + +HF 4+ + + o
blue lines — basis 3 TR G
functions ¢, 2 g —

1 ™ 4 o+ o+ o+ o+ o+ o+ o+

28
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¢ Finite Element Method
¥ Stiffness Matrix

A= (a@-j) with Qj; = fol ¢;¢3dl‘

10

9 Fo+ o+ o+ o+ o+ o+
; Fo+ o+ o+ o+ T \1—[-)
7 —t—t——+—
6 "
5 " 1 S —t—t—+—
4 {_‘_‘ZD 1 For the special case when h; = h we have
3 e e T S SR p_ T )
2 T 1 2 =1L 0 e 0
1 D—l T T T -1 2 -1 :
1o —1 2 —1 .
To assemble the stiffness matrix we need the Bl o 0
gradient (red) of the basis functions (blue) : woo-1 2 -1
0 -+ -+ 0 —1 2

29
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¢ Finite Element Method

¥ Compare to FDM

b= (b;) with b; = [ feda

Note that if Trapezoid rule is used to approximate
the right hand side, then b; = hf;, and therefore
the equations determining u are

§it1 — 26 + &
h

which are exactly the same as FDM.

= hf

¥ Advantage of FEM: do not have to use regular grid
... regular grid ...

+ + + + + + + + 4+ + F+ + + + + + + + o+

... iIrregular grid ...

+ tH+ H# HH ++ + + 4 — —+

Domain D 30

A
v
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¢ Finite Element Method

¥ Simplest Matlab FEM code

CAE

FDM

FEM
Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u(1)=0
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@

¢ Finite Element Method

¥ Results

FD (red) FEM (blue)
0.25

Where heat supply s at

0.2 i

I
1

0.15

u(x)

0.1F .

0.05

I
1

32




£ S AM’ Lab

UNIVERSITY OF
ARKANSAS Advanced Manufacturing | Vodeling | Materials

¥ Solving Linear Systems

¥ Equations

101171 — 733'2 — 7,
—3x1 + 225 + 623 = 4,
dr1 — T2 + dxr3z = 6.

¥ Matrix form

&
N
N
N
I

D = =3

¥ In Matlab

X = A\B. orx=AB

33
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¥ Solving Linear Systems

¥ Linear Algebra (Solving Linear Algebraic Equations)

¥ Direct(LU factorization)
¥ More accurate
¥ Maybe cheaper for many time steps
¥ Banded matrix
¥ Need more memory

¥ Matrix-free (less memory)
% Sparse

SPD (Symmetric Positive Definite)
¥ Converging Issue

34
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THANK
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