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CAE
Evaluating design

https://www.youtube.com/watch?v=p__-QbQbntI

A design of a motion system – motion can be described using kinematic 

equations when approximated as rigid structures 
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CAE
Evaluating design

What if your design is deformable structure, 

involves heat transfer, or fluids 
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CAE
Evaluating design

Conservation Equations 
Conservation of Mass
Conservation of Energy
Conservation of Momentum

Partial Differential Equations
Describing change in space and time

Constitutive Models for Materials
Hooke’s Law
Newtonian Fluid
Etc. 



CAE

FEM

FDM

5

CAE
Evaluating design

Even much more basic properties of the solutions to Navier–Stokes have never
been proven. For the three-dimensional system of equations, and given some
initial conditions, mathematicians have not yet proved that smooth solutions
always exist, or that if they do exist, they have bounded energy per unit mass.

What about higher order, higher dimension PDEs

Reality: Most PDEs CANNOT be solved analytically!!!
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CAE
Evaluating design

Numerical solutions
Discretize and turn PDEs into a system of algebraic 
equations (mostly linear)

Finite difference methods
Finite element methods

Most popular methods

Finite volume method
Boundary element method
Discrete element method
Spectral method
Particle based methods

Other methods

http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Numerical_methods_for_partial_differential_equations
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CAE
Classification of PDEs
Second-order linear PDEs

are classified based on the value of the discriminant b2 − 4ac

b2 − 4ac > 0: hyperbolic
e.g., wave equation: utt− uxx=0
Hyperbolic PDEs describe time dependent, conservative 
physical processes, such as convection, that are not 
evolving toward steady state.

b2 − 4ac = 0: parabolic
e.g., heat equation: ut− uxx=0
Parabolic PDEs describe time-dependent dissipative 
physical processes, such as diffusion, that are evolving 
toward steady state.

b2 − 4ac < 0: elliptic
e.g., Laplace equation: uxx+ uyy=0
Elliptic PDEs describe processes that have already reached 
steady states, and hence are time-independent.

Wave equation

Heat equation

Laplace equation
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CAE
Finite Difference Method

dx

xfdxxf
f

dx
x

)()(
lim

0






dx

xfdxxf
fx

)()( 
 

Discretize 

Forward difference

dx

dxxfxf
fx

)()( 
 

Backward difference

dx

dxxfdxxf
fx

2

)()( 
 Centered difference



CAE

FEM

FDM

9

CAE
Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

Credit: Vrushali A. Bokil and Nathan L. Gibson @ Oregon State U
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CAE
Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

Credit: Vrushali A. Bokil and Nathan L. Gibson @ Oregon State U
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CAE
Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation
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CAE
Finite Difference Method

Consider a 1D initial-boundary value problem for heat equation

Computational Stencil

How to choose ∆t and ∆x?
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CAE
Finite Difference Method

How to choose ∆t and ∆x?

With ∆x = 0.01 and ∆t = 10−5

t

u

Initial condition: discontinuous at x = 0.5
Rapid smoothing of discontinuity as time evolves
High frequency damps quickly. The heat equation is stiff

What happens if r is 
greater than1/2?
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CAE
Finite Difference Method

How to choose ∆t and ∆x?

Unstable behavior of numerical solution
∆t and ∆x cannot be chosen arbitrarily. Must satisfy a 
stable condition. 

What happens if r is greater than1/2?
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CAE
Finite Difference Method

Implicit FDM

Explicit computational stencilImplicit computational stencil
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CAE
Finite Difference Method

Implicit FDM

Stable behavior of numerical solution
∆t and ∆x cannot be chosen to have the same order of 
magnitude. Unconditionally stable. 
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CAE
Finite Difference Method

Implicit FDM – 2nd order accurate in time – trapezoid rule

Computational stencil

Unconditionally stable
Second order accurate in time
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CAE
Finite Difference Method

FDM for advection equation

Information propagates along characteristics 
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CAE
Finite Difference Method

FDM for advection equation

Scheme is explicit
First order accurate in space and time
∆t and ∆x are related by CFL number: ν = a∆t / ∆x

Computational stencil
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CAE
Finite Difference Method

FDM for advection equation

CFL ν <= 1
CFL is a necessary condition for stability of explicit FDM 
applied to Hyperbolic PDEs. It is not a sufficient condition.
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CAE
Finite Difference Method

FDM for Laplace equation

Boundary conditions Discretization 
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CAE
Finite Difference Method

FDM for Laplace equation – centered difference scheme

Five-point stencil
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Finite Difference Method

FDM for Laplace equation – form a system of linear equations

23

b contains boundary 
information
A is block tridiagonal
Structure of A 
depends on the 
order of grid points
Can be solved using 
iterative or direct 
methods, such as 
Gaussian elimination
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Finite Element Method

Features
Complicated geometries
High-order approximations
Strong mathematical foundation
Flexibility

24

Basic Idea
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Poisson’s Equation – Elliptic 
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Steady state heat transfer

1D Example

Solution must be twice differentiable

Unnecessarily strong if f (e.g., heat supply) is discontinuous
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CAE
Finite Element Method

Weak Formulation
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CAE
Finite Element Method

Approximation
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The Basic Idea of FEM

Linear System of Equations
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CAE
Finite Element Method

Basis functions

... otherwise we are 

free to choose any 

function ...

The simplest choice 

are of course linear 

functions:

+ grid nodes

blue lines – basis 

functions ji
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we are looking for functions 

with the following property
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CAE
Finite Element Method

Stiffness Matrix

29

1

2

3

4

5

6

7

8

9

10

To assemble the stiffness matrix we need the

gradient (red) of the basis functions (blue)
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Finite Element Method

Compare to FDM

30

... regular grid ...

... irregular grid ...

Domain D

Advantage of FEM: do not have to use regular grid
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Finite Element Method

Simplest Matlab FEM code

31

% source term

b=(1:nx)*0;b(nx/2)=1.;

% boundary left  u_1  int{ nabla phi_1  nabla phij }

u1=0;   b(1) =0;

% boundary right  u_nx int{ nabla phi_nx nabla phij }

unx=0; b(nx)=0;

% assemble matrix Aij

A=zeros(nx);

for i=2:nx-1,

for j=2:nx-1,

if i==j, 

A(i,j)=2/dx;

elseif j==i+1

A(i,j)=-1/dx;

elseif j==i-1

A(i,j)=-1/dx;

else

A(i,j)=0;

end

end

End

% solve linear system of equations

fem(2:nx-1)=inv(A(2:nx-1,2:nx-1))*s(2:nx-1)'; fem(1)=u1;

fem(nx)=unx;

Domain: [0,1]; nx=100; 

dx=1/(nx-1);f(x)=d(1/2)

Boundary conditions:

u(0)=u(1)=0
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Finite Element Method

Results
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Where heat supply is at
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Solving Linear Systems

Equations
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Matrix form

In Matlab

Or X = A-1B
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CAE
Solving Linear Systems

Linear Algebra (Solving Linear Algebraic Equations)
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Direct(LU factorization)

More accurate

Maybe cheaper for many time steps

Banded matrix

Need more memory

Typically faster

Iterative

Matrix-free (less memory)

Sparse

SPD (Symmetric Positive Definite)

Converging Issue
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